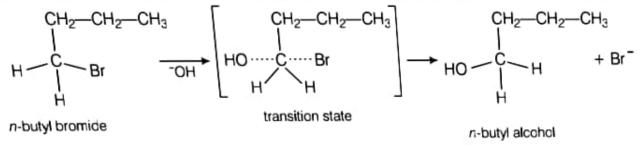

4 tert-Butylbromide reacts with aq. NaOH by S_N1 mechanism while n-butylbromide reacts by S_N1 mechanism. Why?

Tert. butyl bromide reacts with aq. NaOH as follows



tert. butyl bromide when treated with aq. NaOH, it forms tert. corbocation which is more stable intermediate. This intermediate is further attacked by ⁻OH ion.

As tert. carbocation is highly stable so tert butylbromide follow S_N1 mechanism.

In case of *n*-nutylbromide, primary carbocation is formed which is least stable so, it does not follow S_N 1mechanism. Here, stearic hindrance is very less so, it follow S_N 2 mechanism. In S_N 2 mechanism, ⁻OH will attack from backside and a transition state is formed.

The leaving group is then pushed off the eopposite side and the product is formed.

